

Tetrahedron Letters 41 (2000) 257-260

TETRAHEDRON LETTERS

Kinetic and mechanistic investigation on the oxidation of Hantzsch 1,4-dihydropyridines with the tropylium cation: a model for NADH oxidation

Bingjun Zhao,^a Xiaoqing Zhu,^a Yun Lu,^a Chi-Zhong Xia ^b and Jin-Pei Cheng ^{a,}* ^a*Department of Chemistry, Nankai University, Tianjin 300071, China* ^b*Department of Chemistry, Shanxi University, Taiyuan 030006, China*

Received 8 July 1999; accepted 14 September 1999

Abstract

The reaction kinetics of the reactions of Hantzsch esters (HEH) and Hantzsch 4-aryl-1,4-dihydropyridines (4 aryl-HEH) with the tropylium cation as a formal hydride acceptor were investigated. The observed kinetic isotope effect (KIE, k_H/k_D), using HEH and 4,4- d_2 -HEH as substrates, was 4.16, suggesting that the C–H bond cleavage was involved in the rate-limiting step. Correlation analysis on the reactions of *para*-substituted Hantzsch 4-aryl-1,4-dihydropyridines generated a linear Hammett plot (*r*=0.9946), with ρ equal to −1.16, which is also consistent with the one-step hydride removal (from 4-C) mechanism. Comparisons of the kinetics and of the reaction thermodynamics between the reactions of HEH and 4-phenyl-HEH both disfavor the one-electron-transfer-initiated multistep mechanism. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Hantzsch 1,4-dihydropyridines; hydride transfer; tropylium cation; kinetics.

Oxidation of Hantzsch 1,4-dihydropyridines is generally the key step in their numerous reactions of biological importance.^{1–3} In addition to being used in modeling the NADH coenzyme in its biological redox processes, this type of compound was also found to be a highly effective calcium antagonist with a suitable pharmacological profile.⁴ Because it is demonstrated that the metabolism of Hantzsch esters, utilized in the treatment of hypertension, also proceeds through oxidation (i.e., aromatization) of 1,4 dihydropyridines,^{5,6} significant research has been carried out to study the features of these oxidations and new approaches to their aromatization.^{7–11} Despite these intensive efforts, the dehydrogenation mechanisms of HEH, like the long-debated formal hydride transfer mechanisms of other NADH models, still remain puzzling. The debate has mainly focused on: (i) whether the reaction occurs by a onestep hydride transfer or by an electron-transfer-initiated multistep hydride transfer mechanism (i.e., e−−H+−e− or e−−H·); and (ii) whether the reaction center is on the carbon at the 4-position or on the nitrogen at the 1-position of the 1,4-dihydropyridine ring. Experimental evidence in support of the

[∗] Corresponding author. Tel: 0086 22 23501316; fax: 0086 22 23504853; e-mail: jpcheng@sun.nankai.edu.cn

direct hydride transfer mechanism^{12–14} and of the electron-transfer-initiated multistep hydride transfer mechanism¹⁵ or the hydrogen-atom-transfer mechanism¹⁶ for the HEH oxidations has been diversely reported. On the other hand, while the initial dehydrogenation is often found to take place at the 4 carbon position of HEH, $12-14,16$ arguments in favor of the 1-nitrogen as the initial reaction site in some Hantzsch dihydropyridine oxidations also seem to be quite convincing.15,17,18 However, little work on the kinetics and thermodynamics of the HEH-type reactions has been reported. We have recently conducted research focusing on elucidations of the mechanisms for some NADH model-mediated reactions by a combinative analysis of reaction kinetics and thermodynamics.^{19–22} Now this work is extended to the currently important HEH-related reactions. In the present paper, we wish to report the kinetic study on the oxidation of 1,4-dihydropyridines (**1**–**3**) by the tropylium cation (Fig. 1) in order to clarify the mechanism of this process.

The 4-aryl-HEH derivatives (**3a**–**3f**) were prepared from condensation of ethyl acetoacetate, ammonia, and the corresponding aldehydes according to a literature procedure, 23 and were verified by checking their m.p.'s and spectral properties against those of the authentic samples. Tropylium tetrafluoroborate $(T⁺)$ was chosen as the mechanistic probe because it is capable of serving either as an electron acceptor or as a hydride acceptor in its reaction with the Hantzsch type compounds.²⁴ The reactions of T^+ with 4-aryl-HEH were carried out in 30% aqueous acetonitrile at 298 K. All the reactions were followed spectrophotometrically using UV–vis under psuedo-first-order conditions with T^+ in 20–70 fold excess ([HEH]=0.05mM) at constant pH. The pseudo-first-order rate constants (*k*obs) were calculated by the Guggenheim method and the apparent second-order rate constants (k_2^{app}) were derived from the slopes of the plots of k_{obs} versus ([T⁺]+[TOH]). The pH-dependent pseudo-second-order rate constants (k_2 ^{app}) were then evaluated using Eq. 1.

$$
k_2^{\text{app}} = k_2 / (1 + K_{\text{R}} / [\text{H}^+])
$$
 (1)

Eq. 1 may be further simplified to give Eq. 2, if $K_R + \{H^+\}$ is assumed.

$$
\log k_2^{\text{app}} = \log k_2 + pK_{\text{R}^+} - pH \tag{2}
$$

The second-order kinetics (k_2) thus derived for the two reaction systems using HEH and 4-phenyl-HEH as the model are summarized in Table 1.

The oxidation rates of 1,4-dihydropyridines by T^+ obey second-order kinetics. From the deuterium kinetic isotope effect of 4.16, it is clear that direct hydride dissociation from the 4-carbon position must be involved in the rate-limiting step. It is also noted that replacement of a hydrogen at the 4-position of the dihydropyridine ring with a phenyl group (4-phenyl-HEH) has a strong rate-retardation effect (ca. 10^4)

Table 1 Rate constants and kinetic isotope effect of the reactions of HEH and 4-aryl-HEH with tropylium cation at 298 K

Substrates	k_2 ^{app} , M^{-1} s ^{-1 a}	k_2 , \overline{M} ⁻¹ s ^{-1 a}	$k_{\rm H}/k_{\rm D}$
4 -aryl-HEH (3)			
$R=OCH_3(3a)$	1.79	1.82	
$R=CH3(3b)$	1.59	1.61	
$R=H(3c)$	1.26	1.28	
$R=Cl(3d)$	0.57	0.58	
$R=CN(3e)$	0.16	0.17	
$R=NO2(3f)$	0.13	0.13	
HEH(1)	1.86 ^b	1.12×10^{4} c	
$4, 4-d$ ₂ -HEH (2)	$0.45^{\rm b}$	2.70×10^{3} c	4.16

^a Calculated from eq (1) except otherwise noted. Experiment conditions: in 0.1 M ClCH₂COOH-0.1 M KOH 30% aqueous acetonitrile buffer solution, pH = 3.00, ionic strength 1.0. ^b In 0.25 M K₂HPO₄-0.25 M KH₂PO₄ 30% aqueous acetonitrile buffer solution, pH = 8.54, ionic strength 0.5. \textdegree Calculated from eq (2).

folds), which, again, suggests that the tropylium cation must have served as a hydride acceptor, but not as an electron acceptor, in its reaction with Hantzsch esters. This is because ET processes are known to show only minimum effect of steric rate-reduction. The above experimental results also clearly eliminate the N–H bond dissociation as the initial step in the oxidation of the HEH derivatives with T^+ .

A Hammett-type free energy analysis on the oxidations of 4-aryl-HEH by T^+ shows a good linear correspondence of log k_2 against σ constants ($r=0.9946$) with a ρ value equal to −1.16. The much poorer linear regression with $\sigma^+(r=0.9420)$ may be understood if one considers that the phenyl ring has to adopt a twist-conformation with respect to the central dihydropyridine ring after removal (or partial removal) of a hydride from the 4-C position, resulting in a much attenuated through-resonance effect compared to that in the normal Brown-model reaction. The negative ρ value is also consistent with the mechanism proposed above.

On the other hand, distinction between the one-step and the multistep hydride transfer mechanisms may also be made on the basis of the thermodynamic point of view.¹⁹ For this purpose, electrochemical measurements of the respective reactants were performed²⁵ and showed that the energies of electron transfer from HEH to T^+ and from 4-aryl-HEH to T^+ is 24.6 kcal/mol (i.e., 1.064 V) and 28.4–32.0 kcal/mol (i.e., 1.230–1.384 V), respectively. According to the energetic criteria proposed for differentiating the formal hydride transfer mechanisms of the NADH model-mediated reactions,¹⁹ the electron transfer free energies ΔG (e⁻_T) of the latter reactions fall in the region for the one-step mechanism [i.e., ∆*G*(e− T)>1.0 V], whereas the ∆*G*(e− T) of the former reactions in the region for a 'hybrid' mechanism [i.e., ∆*G*(e− T) close to 1.0 V]. And indeed, this is in good accord with the observed KIE of 4.16 which indicates a direct hydride transfer joined with some degree of electron transfer in the rate-limiting step of the HEH oxidation.

To summarize, in the present work, we have presented both the kinetic evidence and preliminary thermodynamic evidence to show that the oxidation of 4-aryl-HEH with the tropylium cation should proceed via an initial one-step hydride removal from the 4-C position of its dihydropyridine ring and that the oxidation of HEH with T^+ should proceed via a hybrid mechanism of hydride transfer and electron transfer. To our knowledge, this appears to be the first work of this kind with regard to the structural variation on the 4-position and to the Hammett-type analysis on the kinetics as effected by the remote substitutents in the 4-aryl ring.

Acknowledgements

This project was supported by the Natural Science Foundation of China (NSFC project no. 29702005) to whom the authors want to express their sincere gratitude.

References

- 1. Esiner, U.; Kuthan, J. *Chem. Rev*. **1972**, *72*, 1–42.
- 2. Stout, D. M.; Meyers, A. I. *Chem. Rev*. **1982**, *82*, 223–243.
- 3. Sauains, A.; Dubers, G. *Heterocycles* **1988**, *27*, 291–314.
- 4. Bossert, F.; Meyer, H.; Wehinger, E. *Angew. Chem, Int. Ed. Engl*. **1981**, *20*, 762–769.
- 5. Bocker, R. H.; Guengerich, F. P. *J. Med. Chem*. **1986**, *29*, 1596–1603.
- 6. McCluskey, S. A.; Riddck, S.; Mackie, J. E.; Kimmett, S. M.; Whitney, R. A.; Marks, G. *Can. Physiol. Pharmacol*. **1992**, *70*, 1069–1074.
- 7. Pfister, J. R. *Synthesis* **1990**, 689–690.
- 8. Maquestian, A.; Mayence, A.; Eynde, J.-J. V. *Tetrahedron Lett*. **1991**, *32*, 3839–3840.
- 9. Eynde, J.-J. V.; Mayence, A.; Maquestiau, A. *Tetrahedron* **1992**, *48*, 463–468.
- 10. Itoh, T.; Nafata, K.; Okada, M.; Ohsawa, A. *Tetrahedron Lett*. **1995**, *51*, 2269–2272.
- 11. Belgado, F.; Alvarez, C.; Garcia, O.; Penieres, G.; Marquez, C. *Synth. Commun*. **1991**, *21*, 2137–2141.
- 12. Norcross, B. E.; Klinedinst, P. E.; Westheimer, E. H. *J. Am. Chem. Soc*. **1962**, *84*, 797–802.
- 13. Louis, H. P. M.; Pandit, U. K. *Tetrahedron* **1985**, *41*, 467–472.
- 14. van Niel, J. C. G.; Pandit, U. K. *J. Chem. Soc., Chem. Commun*. **1983**, 149–150.
- 15. Xu, H.-J.; Deng, G.; Yu, Q. *J. Chem. Soc., Chem. Commun*. **1987**, 916–917.
- 16. Kurz, J. L.; Hutton, R.; Westheimer, F. H. *J. Am. Chem. Soc*. **1961**, *83*, 584–588.
- 17. Love, B.; Snader, K. M. *J. Org. Chem*. **1965**, *30*, 1914–1916.
- 18. Eynde, J.-J. V.; D'Orazic, R.; Haverbrke, Y. V. *Tetrahedron* **1994**, *50*, 2479–2484.
- 19. Cheng, J.-P.; Lu, Y.; Zhu, X. Q.; Mu, L. J. *J. Org. Chem*. **1998**, *63*, 6108–6114.
- 20. Cheng, J.-P.; Lu, Y. *J. Phy. Org. Chem*. **1997**, *10*, 577–582.
- 21. Lu, Y.; Cheng, J.-P. *Chin. Sci. Bull*. **1996**, *41*, 2150–2154.
- 22. Lu, Y.; Cheng, J.-P. *Chin. Sci. Bull*. **1996**, *41*, 1881–1885.
- 23. Hinkel, L. E.; Agling, E. E. *J. Chem. Soc.* **1931**, 1835–1841.
- 24. Bunting, J. W.; Conn, M. M. *Can. J. Chem.* **1990**, *68*, 537–542.
- 25. Cyclic voltammongrams were recorded on a BAS-100B electrochemical analyzer according to the procedure as reported previously. [Cheng, J.-P.; Zhao, Y. *Tetrahedron* **1993**, *49*, 5267–5276.] *E* values (in volts) were measured at a Pt electrode against AgNO₃/Ag reference electrode in 0.1 M Bu₄NPF₆–DMSO at 293 K, taking ferrocenium/ferrocene (Fc⁺/Fc) redox couple as internal standard. The sweep rate was 100 mVs⁻¹. E_{rd}(T⁺)=−0.618; E_{ox}(HEH)=0.446; E_{ox}(4-aryl-HEH): **3a**, 0.612; **3b**, 0.618; **3c**, 0.662; **3d**, 0.680; **3e**, 0.745; **3f**, 0.766. ∆G (e− T)=−*F*∆*E*[(T+/T·)−(NADH+·/NADH)]